Packet clock recovery using a bismuth oxide fiber-based optical power limiter.

نویسندگان

  • Ch Kouloumentas
  • N Pleros
  • P Zakynthinos
  • D Petrantonakis
  • D Apostolopoulos
  • O Zouraraki
  • A Tzanakaki
  • H Avramopoulos
  • I Tomkos
چکیده

We demonstrate an optical clock recovery circuit that extracts the line rate component on a per packet basis from short data packets at 40Gb/s. The circuit comprises a Fabry-Perot filter followed by a novel power limiting configuration, which in turn consists of a 5m highly nonlinear bismuth oxide fiber in cascade with an optical bandpass filter. Both experimental and simulation-based results are in close agreement and reveal that the proposed circuit acquires the timing information within only a small number of bits, yielding a packet clock for every respective data packet. Moreover, we investigate theoretically the scaling laws for the parameters of the circuit for operation beyond 40 Gb/s and present simulation results showing successful packet clock extraction for 160 Gb/s data packets. Finally, the circuit's potential for operation at 320 Gb/s is discussed, indicating that ultrafast packet clock recovery should be in principle feasible by exploiting the passive structure of the device and the fsec-scale nonlinear response of the optical fiber.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-speed All- Optical Time Division Multiplexed Node

In future high-speed self-routing photonic networks based on all-optical time division multiplexing (OTDM) it is highly desirable to carry out packet switching, clock recovery and demultplexing in the optical domain in order to avoid the bottleneck due to the optoelectronics conversion. In this paper we propose a self-routing OTDM node structure composed of an all-optical router and demultiplex...

متن کامل

Observation of Raman Gain in Reduced Length of Bismuth Erbium Doped Fiber

Raman amplification of a 49 cm Bismuth oxide (Bi2O3) as a nonlinear gainmedium based erbium doped fiber amplifier (EDFA) is reported in new and compactdesign in near infrared spectral regions. The bismuth glass host provides theopportunity to be doped heavily with erbium ions to allow a compact optical gain fiberamplifier design by using reduced fiber length and the 1480...

متن کامل

2x2 Bismuth-Oxide-Fiber Based Crossbar Switch for All-Optical Switching Architectures

We demonstrate an optically controlled 2x2 Crossbar switch suitable for all-optical switching architectures. The switch is based on an Ultrafast Nonlinear Interferometer (UNI) configuration and uses 80 centimeters of highly nonlinear Bismuth Oxide fiber. Error-free operation is demonstrated with 10 and 40 Gb/s input signals, with power penalties in its BAR and CROSS states of less than 0.3 dB a...

متن کامل

All-optical clock recovery using erbium-doped fiber ring laser incorporating an electro-absorption modulator and a linear optical amplifier

We demonstrated 10-GHz all-optical clock recovery using an erbium-doped fiber laser incorporating an electro-absorption modulator and linear optical amplifier. Stable clock pulses with peak power of 200 mW and pulsewidth of 6 ps are obtained.

متن کامل

Fully Differential Receiver Chipset for 40 Gb/s Applications Using GaInAs/InP Single Heterojunction Bipolar Transistors

Advent of multimedia applications, which require data links with ever-increasing capacity, is necessitating highspeed optical communication systems and driving research and development for high-speed ICs operating at 40 Gb/s. These optical fiber communication systems require high performance and low power chipsets, which incorporate useful service functions. Figure 1 illustrates a typical recei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 15 16  شماره 

صفحات  -

تاریخ انتشار 2007